TEE-907 Technologies for Enhanced Heat Transfer

Objectives

- 1. The objectives of this course are:
 - a. To understand the fundamentals of enhanced heat transfer
 - b. To discuss main heat transfer enhancement techniques
 - c. To develop new designs for enhanced heat transfer applications
 - d. To apply heat transfer enhancement techniques into thermal heat storage system
 - e. To enable students to identify the optimal solutions to any enhanced heat transfer application, in any sector where heat transfer is involved.

Course Contents

2. Contents with suggested contact hours

No.	Topics	Contact
		Hours
a.	Introduction to Enhanced Heat Transfer	
	Enhancement Techniques	
	Benefits of Enhancement	
	Commercial Applications of Enhanced	3
	Surfaces	
	Definition of Heat Transfer Area	
	Potential for Enhancement	
b.	Heat Transfer Fundamentals	
	Heat Exchanger Design Theory	
	Fin Efficiency	
	Heat Transfer Coefficients and Friction	5
	Factors	5
	Correction for Variation of Fluid Properties	
	Reynold Analogy	
	 Fouling of Heat Transfer Surfaces 	
C.	Performance Evaluation Criteria for Single	5
	Phase Flow	5

	Performance Evaluation Criteria (PEC)		
	PEC for Heat Exchangers		
	PEC for Single Phase Flow		
	Thermal Resistance on Both Sides		
	Heat Exchanger Effectiveness		
	Effect of Reduced Exchanger Flow Rate		
	 Flow Normal to Finned Tube Banks 		
	Exergy Based PEC Analysis		
d.	d. Performance Evaluation Criteria for Two		
	Phase Flow		
	Operating Characteristics of Two Phase Heat		
	Exchangers	5	
	Enhancement in Two Phase Heat Exchange	5	
	Systems		
	PEC for Two Phase Heat Exchange Systems		
	PEC Calculation Method		
e.	Plate and Fin Extended Surfaces		
	Offset Strip Fin		
	Louver Fin		
	Convex Louver Fin		
	Wavy Fin		
	Three Dimensional Corrugated Fins	5	
	Perforated Fin	5	
	Pin Fins and Wire Mesh		
	Vortex Generators		
	Metal Foam Fin		
	Plain Fin		
	Entrance Length Effects		
f.	Externally Finned Tubes		
	Geometric Parameters and the Reynolds	5	
	Number		
	Plain Plate Fins On Round Tubes		

	Plain Individually Finned Tubes		
	Enhanced Plate Fin Geometries with Round		
	Tubes		
	Enhances Circular Fin Geometries		
	Oval and Flat Tube Geometries		
	Row Effects- Staggered and Inline Layouts		
	Heat Transfer Coefficient distribution		
	Performance Comparison of different		
	Geometries		
g.	Insert Devices and Internally Finned Tubes		
	Twisted Tape Insert		
	 Segmented Twisted Tape Insert 		
	Displaces Enhanced Devices		
	Wire Coil Inserts		
	Extended Surface Inserts	5	
	 Tangential Injection Devices 		
	Internally Finned Tubes		
	Spirally Fluted Tubes		
	Advanced Internal Fin Geometries		
	Finned Annuli		
h.	Fouling on Enhanced Surfaces		
	Fouling Fundamentals		
	 Fouling of Gases on Finned Surfaces 		
	Shell-Side Fouling of Liquids		
	Fouling of Liquids in Internally Finned Tubes	4	
	Liquid Fouling in Rough Tubes		
	Liquid Fouling in Plate Fin Geometry		
	Correlations for Fouling in Rough Tubes		
	Fouling in Plate Heat Exchangers		
i.	Enhancement Using Electric Fields and		
	Additives for Gases and Liquids	4	
	Electrode Design and Placement		

	Single Phase Fluids	
	Condensation and Boling	
	Additives for Single Phase Liquids	
	Additives for Single Phase Gases	
	Additives for Boiling	
	Additives for Condensation and Absorption	
j.	Electronic Cooling Heat Transfer	
	Component Thermal Resistances	
	• Limits on Direct Heat Removal with Air-	
	Cooling	
	• Second Generation IndHR Devices for Heat	4
	Removal at Hot Surface	4
	Discussion on Advanced Heat Removal	
	Concepts	
	Remote Heat Exchangers for IndHR	
	System Performance for IndHR System	
		45
		45

<u>Outcomes</u>

- 3. By the end of this course students will be able to:
 - a. To understand the theory behind the heat transfer enhancement
 - b. Identify and explain the working principles of fins of different shapes
 - c. Identify and explain the relative costs and sustainability of each technology
 - d. Evaluate the advantages and disadvantages of different enhanced heat transfer techniques applied in a practical situation and compare the engineering problems in the real world
 - e. Describe sensible heat storage systems used for diurnal and interseasonal thermal energy storage
 - f. Evaluate the potential of phase change materials and chemical reaction systems for thermal energy storage
 - g. Compare the practicality of energy storage systems given the available resources within the local context

- h. Evaluate the potential of energy storage in the local context from given case studies
- f. Details of lab work, workshops practice (if applicable).

4. <u>Recommended Reading (including Textbooks and Reference books)</u>.

S.	Title	Author(s)	Remarks
No.			
a.	Principles of Enhanced Heat	Ralph L. Webb	Text Book
	Transfer, Taylor & Francis,	Nae-Hyun Kim	
	New York, 2005		
b.	Advances in Heat Transfer	Sujoy Kumar	Reference
	Enhancement, Springer	Saha,	Book
	Nature, 2016, Switzerland	Manvendra	
		Tiwari, Bengt	
		Sunden, Zan Wu	
C.	Heat Transfer Enhancement	Vincenzo	Reference
	with Nanofluids, CRC Press,	Bianco, Oronzio	Book
	2015	Manca, Sergio	
		Nardini, Kambiz	
		Vafai	
d.	Plate Heat Exchangers:	L. Wang, B.	Reference
	Design, Applications and	Sunden, R. M.	Book
	Performance, WIT Press,	Manlik	
	2007, USA		